
Micro Technology Europe • September 2009

Real-Time Embedded Databases 37

Continued on page 39Micro Technology Europe • September 2009

36 Industrial Computers
Continued from page

FULL PAGE AD

Databases in real-time sys-
tems sound rather incon-
gruous. Real-time is fast

and compact: databases are big,
complex, slow and non-deter-
ministic. Yet many of today's
real-time systems are handling
massive amounts of data. Is it
any longer sensible to build sys-
tem-specific data handling or can
an off-the-shelf database man-
agement system (DBMS) provide
the answer?

What we are looking for is a
way of handling input data; cor-
relating, merging or comparing
across all data objects and across
time, for filtering or analysis. The
same data may need to be shared
by concurrent tasks that have
different functions, time require-
ments and degrees of impor-
tance. This is what a DBMS is
designed to do; both traditional
databases and real-time data-
bases store, retrieve and manip-

ulate data. The difference is that
a real-time DBMS also has to be
concerned about time.

Time dependent
For real-time applications, the
state of the data in the database
has to be as close to the state of
the real world as is required by
the application (hard real-time is
more demanding than soft real-
time). Traditional databases are
designed for increasing through-
put, with performance measured
in transactions per time unit.

For real-time applications,
however, an important measure
is normally the number of trans-
actions that violate the timing
constraints: that is transactions
that are not completed within a
pre-determined deadline. De-
pending on the environment that
the system is working in, the cost
of missing this deadline will vary.
A third time element is pre-

dictability: measures of average
response times are adequate in
non real-time databases, but for
real-time responses have to be
predictable to guarantee the
completion of time-critical trans-
actions.

To meet these constraints, a
real-time database has to avoid
using components that introduce
unpredictable latencies, such as
disk IO operations, message
passing or garbage collection. In-
stead of disks, a real-time data-
base is best implemented as an
in-memory system. There is no
disk, so no disk IO, and a sim-
pler design than conventional
databases reduces message pass-
ing.

Since the data in the database
have to represent the real world,
and the data may be compro-
mised if they are not updated fast
enough to reflect real-world
events, the DBMS transaction

manager has to be aware of time
or, at the very least, should pro-
vide some way of prioritising the
transactions.

Soft and hard
There is a spectrum of real time.
At one end is what is generally
called hard real-time, the area
where a missed deadline for a
critical transactions cannot be
tolerated, such as in fly-by-wire,
drive-by-wire or the control of
nuclear power plants. Here, a
failure to execute by the deadline
could have catastrophic conse-
quences and so designs tend to be
custom-made for increased secu-
rity.

In a hard real-time system, de-
signers often use custom algo-
rithms and schedule excessive
amounts of time for a transac-
tion, especially a critical one, to
cover a worst-case scenario.
These kinds of systems are often

For all but the
hardest of the hard

An off-the-shelf database may be the best route for handling
the increasing amount of data associated with real-time
systems, argues Chris Hills

Nuclear power plants cannot tolerate a missed deadline for a critical transaction Photo: ja:User:Newsliner

Enquiry No: 22



Micro Technology Europe • September 2009

Real-Time Embedded Databases 39

• ATCA
• Buses & Boards
• Chips/FPGAs
• Displays
• Development Kits
• DSP
• Embedded PCs
• EMC & Thermal
• Enclosures/Racking systems
• Instrumentation
• Memory & Storage
• Microcontrollers/Microprocessors
• MicroTCA

HOW mte helps you sell!

For the full facts contact the sales department on: +44 (0)1582 722460
or email enquires@mtemag.com

www.mtemag.com

Micro Technology Europe is a leading magazine
focused on embedded systems design and development,

and is read by electronics engineers and technical managers
working across all sectors of industry where embedded technologies

are a fundamental part of their company’s design and manufacturing
process.

Through a long and established track record as an important and trusted
information resource, the embedded community rely upon MTE to keep them

informed and up-to-date on the latest industry news and current market trends, expert
comment, technical articles, and new products on the market which will help them gain

advantage in their current projects and future embedded design and development
strategies.
Advertising in MTE, therefore, provides the backbone for your general embedded

campaign, supporting you through every stage of the sales and marketing process by putting
your message in front of the right people, in the right companies, and in the right editorial

environment; helping you to communicate more effectively with your target markets, build brand
awareness, and ultimately increase sales.

• Multicore Processing
• PCI & CompactPCI
• Power Devices
• Real-Time Operating Systems
• Semiconductors
• Simulation & Prototyping
• Software-Defined Radio
• Software Development Tools
• System-on-Chip
• Test & Measurement
• UML
• VME/VXS/COTS
• Wireless

time-driven and time-slice sched-
uled. For these applications, cus-
tom-built data management
software and databases are nor-
mal.

Off-the-shelf databases, how-
ever, are suitable for most real-
time systems, generally called
soft real-time, where violation of
timing constraints results in de-
graded quality but is to some de-
gree tolerable. Unlike the hard
real-time systems, soft real-time
systems can be event-driven and
priority scheduled. It is in this
area that recently there has been
a growth in innovation in creat-
ing commercially available real-
time database systems (RTDBSs)
designed to run on off-the-shelf
hardware and other elements.

Complex soft real-time systems
need databases to support con-
current data access and provide
well-defined interfaces between
software modules, while sup-
porting levels of performance
and predictability lacking in tra-
ditional databases. The tradi-
tional databases are disk based
and cannot achieve predictable
response times in the microsec-
onds or milliseconds range.

Main-memory databases can
achieve this predictability and
main-memory DBMSs are at the
heart of real-time databases.
They take advantage of the re-

search and development in main-
memory database theory and im-
plementation that has been
undertaken since the mid-1980s.
They also exploit inexpensive
memory and the use of 64bit ad-
dressing that have become com-
mon in embedded systems.

Commercial databases
A commercial database designed
from the ground up for real-time
embedded systems can be driven
by the need to eliminate per-
formance overhead while pro-
viding a predictable and reliable
transactional model for applica-
tions such as telecoms equip-
ment, factory floor automation
systems, process control, zero-la-
tency consumer electronics de-
vices and medical equipment.
Unlike traditional systems, it can
have a very small code footprint.

Such a system could map its
database directly into the appli-
cation's address space, providing
applications with direct pointers
to the data elements, eliminating
expensive buffer management.
Here, a data element takes only
a three-stage journey from data-
base to application, in contrast
to a traditional database where
the journey can include as many
as six stages, each with its own
variable latency (see Figs. 1 and
2). Access to data is further im-
proved as the associated access
structures are placed on the ap-
plication's stack.

Run-time code can be directly
linked with the application, elim-
inating remote procedure calls,
and the execution path can gen-
erally require just a few CPU in-
structions. To improve still
further the predictability and
performance of database read

and write operations, the data-
base need never rely on the oper-
ating system's memory
management and instead use its
own highly optimised memory
manager that is responsible for
all allocations and de-allocations
made by the database. As the
database is in main-memory,
there would be no bottleneck
created by paging data in and out
during IO operations.

One of the important facets of
a database is it interfacing to the
rest of the world. This type of
database can have SQL and
ODBC interfaces as well as two
APIs, one API static and the
other a dynamic navigational
API that can be configured to fit
closely to the application. Op-
tional XML extensions can be
used for retrieving XML objects
from an external source, creating
them in the database, and gener-
ating an XML schema for each
class in the database.

An operating system is not re-
quired as it could run happily on
bare bones boards, but if an op-
erating system is available it
could take advantage of it.

Fits the task
Database systems are designed to
manage persistent data shared
among multiple tasks and are
built so that transactions main-
tain the acid (atomicity, consis-
tency, isolation and durability)
test of data. Real-time systems
add temporal characteristics. In
the majority of real-time systems,
expired or missed transactions
do not lead to catastrophic con-
sequences, they simply have no
value. For these soft real-time
systems modern commercial
main-memory database technol-
ogy can be effective.

It used to be unusual to buy an
RTOS: in-house development
was the way to go. Now there is
a range of RTOSs available to
match specific requirements, al-
lowing developers to concentrate
on the differentiating features of
their application. With the in-
creasing availability of real-time
databases, the same changes are
taking place for all except the
hardest of hard real-time sys-
tems. �

Chris Hills is founder and
CTO of Phaedrus Systems

Fig. 1: The journey that a data
element makes in a business database

Fig. 2: The journey of a data element
within a database designed from the
ground up for real-time embedded
systems

“It used to be

unusual to buy an

RTOS: in-house

development was

the way to go.

Now there are

RTOSs available

to match specific

requirements,

letting developers

concentrate on

the differentiating

features of their

application. With

the increasing

availability of

real-time

databases, the

same changes

are taking place

for all except the

hardest of hard

real-time

systems

Continued from page 37

Enquiry No: 23


